using UnityEngine;
using System.Collections;
namespace RootMotion.FinalIK {
///
/// Grounding for LimbIK, CCD and/or FABRIK solvers.
///
[HelpURL("http://www.root-motion.com/finalikdox/html/page9.html")]
[AddComponentMenu("Scripts/RootMotion.FinalIK/Grounder/Grounder Quadruped")]
public class GrounderQuadruped: Grounder {
// Open the User Manual URL
[ContextMenu("User Manual")]
protected override void OpenUserManual() {
Application.OpenURL("http://www.root-motion.com/finalikdox/html/page9.html");
}
// Open the Script Reference URL
[ContextMenu("Scrpt Reference")]
protected override void OpenScriptReference() {
Application.OpenURL("http://www.root-motion.com/finalikdox/html/class_root_motion_1_1_final_i_k_1_1_grounder_quadruped.html");
}
#region Main Interface
///
/// The %Grounding solver for the forelegs.
///
[Tooltip("The Grounding solver for the forelegs.")]
public Grounding forelegSolver = new Grounding();
///
/// The weight of rotating the character root to the ground angle (range: 0 - 1).
///
[Tooltip("The weight of rotating the character root to the ground angle (range: 0 - 1).")]
[Range(0f, 1f)]
public float rootRotationWeight = 0.5f;
///
/// The maximum angle of rotating the quadruped downwards (going downhill, range: -90 - 0).
///
[Tooltip("The maximum angle of rotating the quadruped downwards (going downhill, range: -90 - 0).")]
[Range(-90f, 0f)]
public float minRootRotation = -25f;
///
/// The maximum angle of rotating the quadruped upwards (going uphill, range: 0 - 90).
///
[Tooltip("The maximum angle of rotating the quadruped upwards (going uphill, range: 0 - 90).")]
[Range(0f, 90f)]
public float maxRootRotation = 45f;
///
/// The speed of interpolating the character root rotation (range: 0 - inf).
///
[Tooltip("The speed of interpolating the character root rotation (range: 0 - inf).")]
public float rootRotationSpeed = 5f;
///
/// The maximum IK offset for the legs (range: 0 - inf).
///
[Tooltip("The maximum IK offset for the legs (range: 0 - inf).")]
public float maxLegOffset = 0.5f;
///
/// The maximum IK offset for the forelegs (range: 0 - inf).
///
[Tooltip("The maximum IK offset for the forelegs (range: 0 - inf).")]
public float maxForeLegOffset = 0.5f;
///
/// The weight of maintaining the head's rotation as it was before solving the Grounding (range: 0 - 1).
///
[Tooltip("The weight of maintaining the head's rotation as it was before solving the Grounding (range: 0 - 1).")]
[Range(0f, 1f)]
public float maintainHeadRotationWeight = 0.5f;
///
/// The root Transform of the character, with the rigidbody and the collider.
///
[Tooltip("The root Transform of the character, with the rigidbody and the collider.")]
public Transform characterRoot;
///
/// The pelvis transform. Common ancestor of both legs and the spine.
///
[Tooltip("The pelvis transform. Common ancestor of both legs and the spine.")]
public Transform pelvis;
///
/// The last bone in the spine that is the common parent for both forelegs.
///
[Tooltip("The last bone in the spine that is the common parent for both forelegs.")]
public Transform lastSpineBone;
///
/// The head (optional, if you intend to maintain its rotation).
///
[Tooltip("The head (optional, if you intend to maintain its rotation).")]
public Transform head;
///
/// %IK componets of the hindlegs. Can be any type of IK components.
///
public IK[] legs;
///
/// %IK components for the forelegs. Can be any type of IK components.
///
public IK[] forelegs;
///
/// When using GrounderQuadruped on a spherical object, update this vector to always point towards the center of that object.
///
[HideInInspector] public Vector3 gravity = Vector3.down;
#endregion Main Interface
public override void ResetPosition() {
for (int i = 0; i < legs.Length; i++)
{
legs[i].GetIKSolver().IKPosition = feet[i].transform.position;
if (legs[i] is LimbIK)
{
var leg = legs[i] as LimbIK;
leg.solver.IKRotation = solver.legs[i].transform.rotation;
}
}
solver.Reset();
forelegSolver.Reset();
}
// Contains all the required information about a foot
public struct Foot {
public IKSolver solver;
public Transform transform;
public Quaternion rotation;
public Grounding.Leg leg;
// The custom constructor
public Foot (IKSolver solver, Transform transform) {
this.solver = solver;
this.transform = transform;
this.leg = null;
rotation = transform.rotation;
}
}
private Foot[] feet = new Foot[0];
private Vector3 animatedPelvisLocalPosition;
private Quaternion animatedPelvisLocalRotation;
private Quaternion animatedHeadLocalRotation;
private Vector3 solvedPelvisLocalPosition;
private Quaternion solvedPelvisLocalRotation;
private Quaternion solvedHeadLocalRotation;
private int solvedFeet;
private bool solved;
private float angle;
private Transform forefeetRoot;
private Quaternion headRotation;
private float lastWeight;
private Rigidbody characterRootRigidbody;
// Can we initiate the Grounding?
private bool IsReadyToInitiate() {
if (pelvis == null) return false;
if (lastSpineBone == null) return false;
if (legs.Length == 0) return false;
if (forelegs.Length == 0) return false;
if (characterRoot == null) return false;
if (!IsReadyToInitiateLegs(legs)) return false;
if (!IsReadyToInitiateLegs(forelegs)) return false;
return true;
}
// Are the leg IK components valid for initiation?
private bool IsReadyToInitiateLegs(IK[] ikComponents) {
foreach (IK leg in ikComponents) {
if (leg == null) return false;
if (leg is FullBodyBipedIK) {
LogWarning("GrounderIK does not support FullBodyBipedIK, use CCDIK, FABRIK, LimbIK or TrigonometricIK instead. If you want to use FullBodyBipedIK, use the GrounderFBBIK component.");
return false;
}
if (leg is FABRIKRoot) {
LogWarning("GrounderIK does not support FABRIKRoot, use CCDIK, FABRIK, LimbIK or TrigonometricIK instead.");
return false;
}
if (leg is AimIK) {
LogWarning("GrounderIK does not support AimIK, use CCDIK, FABRIK, LimbIK or TrigonometricIK instead.");
return false;
}
}
return true;
}
// Weigh out the IK solvers properly when the component is disabled
void OnDisable() {
if (!initiated) return;
for (int i = 0; i < feet.Length; i++) {
if (feet[i].solver != null) feet[i].solver.IKPositionWeight = 0f;
}
}
// Initiate once we have all the required components
void Update() {
weight = Mathf.Clamp(weight, 0f, 1f);
if (weight <= 0f) return;
solved = false;
if (initiated) return;
if (!IsReadyToInitiate()) return;
Initiate();
}
// Initiate this Grounder
private void Initiate() {
// Building the feet
feet = new Foot[legs.Length + forelegs.Length];
// Gathering the last bones of the IK solvers as feet
Transform[] footBones = InitiateFeet(legs, ref feet, 0);
Transform[] forefootBones = InitiateFeet(forelegs, ref feet, legs.Length);
// Store the default localPosition and localRotation of the pelvis
animatedPelvisLocalPosition = pelvis.localPosition;
animatedPelvisLocalRotation = pelvis.localRotation;
if (head != null) animatedHeadLocalRotation = head.localRotation;
forefeetRoot = new GameObject().transform;
forefeetRoot.parent = transform;
forefeetRoot.name = "Forefeet Root";
// Initiate the Grounding
solver.Initiate(transform, footBones);
forelegSolver.Initiate(forefeetRoot, forefootBones);
for (int i = 0; i < footBones.Length; i++) feet[i].leg = solver.legs[i];
for (int i = 0; i < forefootBones.Length; i++) feet[i + legs.Length].leg = forelegSolver.legs[i];
characterRootRigidbody = characterRoot.GetComponent();
initiated = true;
}
// Initiate the feet
private Transform[] InitiateFeet(IK[] ikComponents, ref Foot[] f, int indexOffset) {
Transform[] bones = new Transform[ikComponents.Length];
for (int i = 0; i < ikComponents.Length; i++) {
IKSolver.Point[] points = ikComponents[i].GetIKSolver().GetPoints();
f[i + indexOffset] = new Foot(ikComponents[i].GetIKSolver(), points[points.Length - 1].transform);
bones[i] = f[i + indexOffset].transform;
// Add to the update delegates of each ik solver
f[i + indexOffset].solver.OnPreUpdate += OnSolverUpdate;
f[i + indexOffset].solver.OnPostUpdate += OnPostSolverUpdate;
}
return bones;
}
void LateUpdate () {
if (weight <= 0f) return;
// Clamping values
rootRotationWeight = Mathf.Clamp(rootRotationWeight, 0f, 1f);
minRootRotation = Mathf.Clamp(minRootRotation, -90f, maxRootRotation);
maxRootRotation = Mathf.Clamp(maxRootRotation, minRootRotation, 90f);
rootRotationSpeed = Mathf.Clamp(rootRotationSpeed, 0f, rootRotationSpeed);
maxLegOffset = Mathf.Clamp(maxLegOffset, 0f, maxLegOffset);
maxForeLegOffset = Mathf.Clamp(maxForeLegOffset, 0f, maxForeLegOffset);
maintainHeadRotationWeight = Mathf.Clamp(maintainHeadRotationWeight, 0f, 1f);
// Rotate the character root
RootRotation();
}
// Rotate the character along with the terrain
private void RootRotation() {
if (rootRotationWeight <= 0f) return;
if (rootRotationSpeed <= 0f) return;
solver.rotateSolver = true;
forelegSolver.rotateSolver = true;
// Get the horizontal rotation of the character
Vector3 tangent = characterRoot.forward;
Vector3 normal = -gravity;
Vector3.OrthoNormalize(ref normal, ref tangent);
Quaternion horizontalRotation = Quaternion.LookRotation(tangent, -gravity);
// Get the direction from root hit to forelegs root hit in the space of the horizontal character rotation
Vector3 hitDirection = forelegSolver.rootHit.point - solver.rootHit.point;
Vector3 hitDirectionLocal = Quaternion.Inverse(horizontalRotation) * hitDirection;
// Get the angle between the horizontal and hit directions
float angleTarget = Mathf.Atan2(hitDirectionLocal.y, hitDirectionLocal.z) * Mathf.Rad2Deg;
angleTarget = Mathf.Clamp(angleTarget * rootRotationWeight, minRootRotation, maxRootRotation);
// Interpolate the angle
angle = Mathf.Lerp(angle, angleTarget, Time.deltaTime * rootRotationSpeed);
if (characterRootRigidbody == null) {
characterRoot.rotation = Quaternion.Slerp(characterRoot.rotation, Quaternion.AngleAxis(-angle, characterRoot.right) * horizontalRotation, weight);
} else {
characterRootRigidbody.MoveRotation(Quaternion.Slerp(characterRoot.rotation, Quaternion.AngleAxis(-angle, characterRoot.right) * horizontalRotation, weight));
}
}
// Called before updating the first IK solver
private void OnSolverUpdate() {
if (!enabled) return;
if (weight <= 0f) {
if (lastWeight <= 0f) return;
// Weigh out the limb solvers properly
OnDisable();
}
lastWeight = weight;
// If another IK has already solved in this frame, do nothing
if (solved) return;
if (OnPreGrounder != null) OnPreGrounder();
// If the bone transforms have not changed since last solved state, consider them unanimated
if (pelvis.localPosition != solvedPelvisLocalPosition) animatedPelvisLocalPosition = pelvis.localPosition;
else pelvis.localPosition = animatedPelvisLocalPosition;
if (pelvis.localRotation != solvedPelvisLocalRotation) animatedPelvisLocalRotation = pelvis.localRotation;
else pelvis.localRotation = animatedPelvisLocalRotation;
if (head != null) {
if (head.localRotation != solvedHeadLocalRotation) animatedHeadLocalRotation = head.localRotation;
else head.localRotation = animatedHeadLocalRotation;
}
for (int i = 0; i < feet.Length; i++) feet[i].rotation = feet[i].transform.rotation;
// Store the head rotation so it could be maintained later
if (head != null) headRotation = head.rotation;
// Position the forefeet root to the center of forefeet
UpdateForefeetRoot();
// Update the Grounding
solver.Update();
forelegSolver.Update();
// Move the pelvis
pelvis.position += solver.pelvis.IKOffset * weight;
// Rotate the pelvis
Vector3 spineDirection = lastSpineBone.position - pelvis.position;
Vector3 newSpinePosition =
lastSpineBone.position +
forelegSolver.root.up * Mathf.Clamp(forelegSolver.pelvis.heightOffset, Mathf.NegativeInfinity, 0f) -
solver.root.up * solver.pelvis.heightOffset;
Vector3 newDirection = newSpinePosition - pelvis.position;
Quaternion f = Quaternion.FromToRotation(spineDirection, newDirection);
pelvis.rotation = Quaternion.Slerp(Quaternion.identity, f, weight) * pelvis.rotation;
// Update the IKPositions and IKPositonWeights of the legs
for (int i = 0; i < feet.Length; i++) SetFootIK(feet[i], (i < 2? maxLegOffset: maxForeLegOffset));
solved = true;
solvedFeet = 0;
if (OnPostGrounder != null) OnPostGrounder();
}
// Position the forefeet root to the center of forefeet
private void UpdateForefeetRoot() {
// Get the centroid
Vector3 foreFeetCenter = Vector3.zero;
for (int i = 0; i < forelegSolver.legs.Length; i++) {
foreFeetCenter += forelegSolver.legs[i].transform.position;
}
foreFeetCenter /= (float)forelegs.Length;
Vector3 dir = foreFeetCenter - transform.position;
// Ortho-normalize to this Transform's rotation
Vector3 normal = transform.up;
Vector3 tangent = dir;
Vector3.OrthoNormalize(ref normal, ref tangent);
// Positioning the forefeet root
forefeetRoot.position = transform.position + tangent.normalized * dir.magnitude;
}
// Set the IK position and weight for a limb
private void SetFootIK(Foot foot, float maxOffset) {
Vector3 direction = foot.leg.IKPosition - foot.transform.position;
foot.solver.IKPosition = foot.transform.position + Vector3.ClampMagnitude(direction, maxOffset);
foot.solver.IKPositionWeight = weight;
}
// Rotating the feet after IK has finished
private void OnPostSolverUpdate() {
if (weight <= 0f) return;
if (!enabled) return;
// Only do this after the last IK solver has finished
solvedFeet ++;
if (solvedFeet < feet.Length) return;
for (int i = 0; i < feet.Length; i++) {
feet[i].transform.rotation = Quaternion.Slerp(Quaternion.identity, feet[i].leg.rotationOffset, weight) * feet[i].rotation;
}
if (head != null) head.rotation = Quaternion.Lerp(head.rotation, headRotation, maintainHeadRotationWeight * weight);
// Store the solved transform's of the bones so we know if they are not animated
solvedPelvisLocalPosition = pelvis.localPosition;
solvedPelvisLocalRotation = pelvis.localRotation;
if (head != null) solvedHeadLocalRotation = head.localRotation;
if (OnPostIK != null) OnPostIK();
}
// Cleaning up the delegates
void OnDestroy() {
if (initiated) {
DestroyLegs(legs);
DestroyLegs(forelegs);
}
}
// Cleaning up the delegates
private void DestroyLegs(IK[] ikComponents) {
foreach (IK leg in ikComponents) {
if (leg != null) {
leg.GetIKSolver().OnPreUpdate -= OnSolverUpdate;
leg.GetIKSolver().OnPostUpdate -= OnPostSolverUpdate;
}
}
}
}
}