using UnityEngine;
using System.Collections;
namespace RootMotion.FinalIK {
///
/// The base abstract class for all %IK solvers
///
[System.Serializable]
public abstract class IKSolver {
#region Main Interface
[HideInInspector] public bool executedInEditor;
///
/// Determines whether this instance is valid or not.
///
public bool IsValid() {
string message = string.Empty;
return IsValid(ref message);
}
///
/// Determines whether this instance is valid or not. If returns false, also fills in an error message.
///
public abstract bool IsValid(ref string message);
///
/// Initiate the solver with specified root Transform. Use only if this %IKSolver is not a member of an %IK component.
///
public void Initiate(Transform root) {
if (executedInEditor) return;
if (OnPreInitiate != null) OnPreInitiate();
if (root == null) Debug.LogError("Initiating IKSolver with null root Transform.");
this.root = root;
initiated = false;
string message = string.Empty;
if (!IsValid(ref message)) {
Warning.Log(message, root, false);
return;
}
OnInitiate();
StoreDefaultLocalState();
initiated = true;
firstInitiation = false;
if (OnPostInitiate != null) OnPostInitiate();
}
///
/// Updates the %IK solver. Use only if this %IKSolver is not a member of an %IK component or the %IK component has been disabled and you intend to manually control the updating.
///
public void Update() {
if (OnPreUpdate != null) OnPreUpdate();
if (firstInitiation) Initiate(root); // when the IK component has been disabled in Awake, this will initiate it.
if (!initiated) return;
OnUpdate();
if (OnPostUpdate != null) OnPostUpdate();
}
///
/// The %IK position.
///
[HideInInspector] public Vector3 IKPosition;
[Tooltip("The positional or the master weight of the solver.")]
///
/// The %IK position weight or the master weight of the solver.
///
[Range(0f, 1f)]
public float IKPositionWeight = 1f;
///
/// Gets the %IK position. NOTE: You are welcome to read IKPosition directly, this method is here only to match the Unity's built in %IK API.
///
public virtual Vector3 GetIKPosition() {
return IKPosition;
}
///
/// Sets the %IK position. NOTE: You are welcome to set IKPosition directly, this method is here only to match the Unity's built in %IK API.
///
public void SetIKPosition(Vector3 position) {
IKPosition = position;
}
///
/// Gets the %IK position weight. NOTE: You are welcome to read IKPositionWeight directly, this method is here only to match the Unity's built in %IK API.
///
public float GetIKPositionWeight() {
return IKPositionWeight;
}
///
/// Sets the %IK position weight. NOTE: You are welcome to set IKPositionWeight directly, this method is here only to match the Unity's built in %IK API.
///
public void SetIKPositionWeight(float weight) {
IKPositionWeight = Mathf.Clamp(weight, 0f, 1f);
}
///
/// Gets the root Transform.
///
public Transform GetRoot() {
return root;
}
///
/// Gets a value indicating whether this has successfully initiated.
///
public bool initiated { get; private set; }
///
/// Gets all the points used by the solver.
///
public abstract IKSolver.Point[] GetPoints();
///
/// Gets the point with the specified Transform.
///
public abstract IKSolver.Point GetPoint(Transform transform);
///
/// Fixes all the Transforms used by the solver to their initial state.
///
public abstract void FixTransforms();
///
/// Stores the default local state for the bones used by the solver.
///
public abstract void StoreDefaultLocalState();
///
/// The most basic element type in the %IK chain that all other types extend from.
///
[System.Serializable]
public class Point {
///
/// The transform.
///
public Transform transform;
///
/// The weight of this bone in the solver.
///
[Range(0f, 1f)]
public float weight = 1f;
///
/// Virtual position in the %IK solver.
///
public Vector3 solverPosition;
///
/// Virtual rotation in the %IK solver.
///
public Quaternion solverRotation = Quaternion.identity;
///
/// The default local position of the Transform.
///
public Vector3 defaultLocalPosition;
///
/// The default local rotation of the Transform.
///
public Quaternion defaultLocalRotation;
///
/// Stores the default local state of the point.
///
public void StoreDefaultLocalState() {
defaultLocalPosition = transform.localPosition;
defaultLocalRotation = transform.localRotation;
}
///
/// Fixes the transform to its default local state.
///
public void FixTransform() {
if (transform.localPosition != defaultLocalPosition) transform.localPosition = defaultLocalPosition;
if (transform.localRotation != defaultLocalRotation) transform.localRotation = defaultLocalRotation;
}
///
/// Updates the solverPosition (in world space).
///
public void UpdateSolverPosition() {
solverPosition = transform.position;
}
///
/// Updates the solverPosition (in local space).
///
public void UpdateSolverLocalPosition() {
solverPosition = transform.localPosition;
}
///
/// Updates the solverPosition/Rotation (in world space).
///
public void UpdateSolverState() {
solverPosition = transform.position;
solverRotation = transform.rotation;
}
///
/// Updates the solverPosition/Rotation (in local space).
///
public void UpdateSolverLocalState() {
solverPosition = transform.localPosition;
solverRotation = transform.localRotation;
}
}
///
/// %Bone type of element in the %IK chain. Used in the case of skeletal Transform hierarchies.
///
[System.Serializable]
public class Bone: Point {
///
/// The length of the bone.
///
public float length;
///
/// The sqr mag of the bone.
///
public float sqrMag;
///
/// Local axis to target/child bone.
///
public Vector3 axis = -Vector3.right;
///
/// Gets the rotation limit component from the Transform if there is any.
///
public RotationLimit rotationLimit {
get {
if (!isLimited) return null;
if (_rotationLimit == null) _rotationLimit = transform.GetComponent();
isLimited = _rotationLimit != null;
return _rotationLimit;
}
set {
_rotationLimit = value;
isLimited = value != null;
}
}
/*
* Swings the Transform's axis towards the swing target
* */
public void Swing(Vector3 swingTarget, float weight = 1f) {
if (weight <= 0f) return;
Quaternion r = Quaternion.FromToRotation(transform.rotation * axis, swingTarget - transform.position);
if (weight >= 1f) {
transform.rotation = r * transform.rotation;
return;
}
transform.rotation = Quaternion.Lerp(Quaternion.identity, r, weight) * transform.rotation;
}
public static void SolverSwing(Bone[] bones, int index, Vector3 swingTarget, float weight = 1f) {
if (weight <= 0f) return;
Quaternion r = Quaternion.FromToRotation(bones[index].solverRotation * bones[index].axis, swingTarget - bones[index].solverPosition);
if (weight >= 1f) {
for (int i = index; i < bones.Length; i++) {
bones[i].solverRotation = r * bones[i].solverRotation;
}
return;
}
for (int i = index; i < bones.Length; i++) {
bones[i].solverRotation = Quaternion.Lerp(Quaternion.identity, r, weight) * bones[i].solverRotation;
}
}
/*
* Swings the Transform's axis towards the swing target on the XY plane only
* */
public void Swing2D(Vector3 swingTarget, float weight = 1f) {
if (weight <= 0f) return;
Vector3 from = transform.rotation * axis;
Vector3 to = swingTarget - transform.position;
float angleFrom = Mathf.Atan2(from.x, from.y) * Mathf.Rad2Deg;
float angleTo = Mathf.Atan2(to.x, to.y) * Mathf.Rad2Deg;
transform.rotation = Quaternion.AngleAxis(Mathf.DeltaAngle(angleFrom, angleTo) * weight, Vector3.back) * transform.rotation;
}
/*
* Moves the bone to the solver position
* */
public void SetToSolverPosition() {
transform.position = solverPosition;
}
public Bone() {}
public Bone (Transform transform) {
this.transform = transform;
}
public Bone (Transform transform, float weight) {
this.transform = transform;
this.weight = weight;
}
private RotationLimit _rotationLimit;
private bool isLimited = true;
}
///
/// %Node type of element in the %IK chain. Used in the case of mixed/non-hierarchical %IK systems
///
[System.Serializable]
public class Node: Point {
///
/// Distance to child node.
///
public float length;
///
/// The effector position weight.
///
public float effectorPositionWeight;
///
/// The effector rotation weight.
///
public float effectorRotationWeight;
///
/// Position offset.
///
public Vector3 offset;
public Node() {}
public Node (Transform transform) {
this.transform = transform;
}
public Node (Transform transform, float weight) {
this.transform = transform;
this.weight = weight;
}
}
///
/// Delegates solver update events.
///
public delegate void UpdateDelegate();
///
/// Delegates solver iteration events.
///
public delegate void IterationDelegate(int i);
///
/// Called before initiating the solver.
///
public UpdateDelegate OnPreInitiate;
///
/// Called after initiating the solver.
///
public UpdateDelegate OnPostInitiate;
///
/// Called before updating.
///
public UpdateDelegate OnPreUpdate;
///
/// Called after writing the solved pose
///
public UpdateDelegate OnPostUpdate;
#endregion Main Interface
protected abstract void OnInitiate();
protected abstract void OnUpdate();
protected bool firstInitiation = true;
[SerializeField][HideInInspector] protected Transform root;
protected void LogWarning(string message) {
Warning.Log(message, root, true);
}
#region Class Methods
///
/// Checks if an array of objects contains any duplicates.
///
public static Transform ContainsDuplicateBone(Bone[] bones) {
for (int i = 0; i < bones.Length; i++) {
for (int i2 = 0; i2 < bones.Length; i2++) {
if (i != i2 && bones[i].transform == bones[i2].transform) return bones[i].transform;
}
}
return null;
}
/*
* Make sure the bones are in valid Hierarchy
* */
public static bool HierarchyIsValid(IKSolver.Bone[] bones) {
for (int i = 1; i < bones.Length; i++) {
// If parent bone is not an ancestor of bone, the hierarchy is invalid
if (!Hierarchy.IsAncestor(bones[i].transform, bones[i - 1].transform)) {
return false;
}
}
return true;
}
// Calculates bone lengths and axes, returns the length of the entire chain
protected static float PreSolveBones(ref Bone[] bones) {
float length = 0;
for (int i = 0; i < bones.Length; i++) {
bones[i].solverPosition = bones[i].transform.position;
bones[i].solverRotation = bones[i].transform.rotation;
}
for (int i = 0; i < bones.Length; i++) {
if (i < bones.Length - 1) {
bones[i].sqrMag = (bones[i + 1].solverPosition - bones[i].solverPosition).sqrMagnitude;
bones[i].length = Mathf.Sqrt(bones[i].sqrMag);
length += bones[i].length;
bones[i].axis = Quaternion.Inverse(bones[i].solverRotation) * (bones[i + 1].solverPosition - bones[i].solverPosition);
} else {
bones[i].sqrMag = 0f;
bones[i].length = 0f;
}
}
return length;
}
#endregion Class Methods
}
}