using UnityEngine; using System.Collections; namespace RootMotion.FinalIK { /// /// Using a spherical polygon to limit the range of rotation on universal and ball-and-socket joints. A reach cone is specified as a spherical polygon /// on the surface of a a reach sphere that defines all positions the longitudinal segment axis beyond the joint can take. /// /// This class is based on the "Fast and Easy Reach-Cone Joint Limits" paper by Jane Wilhelms and Allen Van Gelder. /// Computer Science Dept., University of California, Santa Cruz, CA 95064. August 2, 2001 /// http://users.soe.ucsc.edu/~avg/Papers/jtl.pdf /// /// [HelpURL("http://www.root-motion.com/finalikdox/html/page14.html")] [AddComponentMenu("Scripts/RootMotion.FinalIK/Rotation Limits/Rotation Limit Polygonal")] public class RotationLimitPolygonal : RotationLimit { // Open the User Manual URL [ContextMenu("User Manual")] private void OpenUserManual() { Application.OpenURL("http://www.root-motion.com/finalikdox/html/page14.html"); } // Open the Script Reference URL [ContextMenu("Scrpt Reference")] private void OpenScriptReference() { Application.OpenURL("http://www.root-motion.com/finalikdox/html/class_root_motion_1_1_final_i_k_1_1_rotation_limit_polygonal.html"); } // Link to the Final IK Google Group [ContextMenu("Support Group")] void SupportGroup() { Application.OpenURL("https://groups.google.com/forum/#!forum/final-ik"); } // Link to the Final IK Asset Store thread in the Unity Community [ContextMenu("Asset Store Thread")] void ASThread() { Application.OpenURL("http://forum.unity3d.com/threads/final-ik-full-body-ik-aim-look-at-fabrik-ccd-ik-1-0-released.222685/"); } #region Main Interface /// /// Limit of twist rotation around the main axis. /// [Range(0f, 180f)] public float twistLimit = 180; /// /// The number of smoothing iterations applied to the polygon. /// [Range(0, 3)] public int smoothIterations = 0; /// /// Sets the limit points and recalculates the reach cones. /// /// /// _points. /// public void SetLimitPoints(LimitPoint[] points) { if (points.Length < 3) { LogWarning("The polygon must have at least 3 Limit Points."); return; } this.points = points; BuildReachCones(); } #endregion Main Interface /* * Limits the rotation in the local space of this instance's Transform. * */ protected override Quaternion LimitRotation(Quaternion rotation) { if (reachCones.Length == 0) Start(); // Subtracting off-limits swing Quaternion swing = LimitSwing(rotation); // Apply twist limits return LimitTwist(swing, axis, secondaryAxis, twistLimit); } /* * Tetrahedron composed of 2 Limit points, the origin and an axis point. * */ [System.Serializable] public class ReachCone { public Vector3[] tetrahedron; public float volume; public Vector3 S, B; public Vector3 o { get { return tetrahedron[0]; }} public Vector3 a { get { return tetrahedron[1]; }} public Vector3 b { get { return tetrahedron[2]; }} public Vector3 c { get { return tetrahedron[3]; }} public ReachCone(Vector3 _o, Vector3 _a, Vector3 _b, Vector3 _c) { this.tetrahedron = new Vector3[4]; this.tetrahedron[0] = _o; // Origin this.tetrahedron[1] = _a; // Axis this.tetrahedron[2] = _b; // Limit Point 1 this.tetrahedron[3] = _c; // Limit Point 2 this.volume = 0; this.S = Vector3.zero; this.B = Vector3.zero; } public bool isValid { get { return volume > 0; }} public void Calculate() { Vector3 crossAB = Vector3.Cross(a, b); volume = Vector3.Dot(crossAB, c) / 6.0f; S = Vector3.Cross(a, b).normalized; B = Vector3.Cross(b, c).normalized; } } /* * The points defining the polygon * */ [System.Serializable] public class LimitPoint { public Vector3 point; public float tangentWeight; public LimitPoint() { this.point = Vector3.forward; this.tangentWeight = 1; } } [HideInInspector] public LimitPoint[] points; [HideInInspector] public Vector3[] P; [HideInInspector] public ReachCone[] reachCones = new ReachCone[0]; void Start() { if (points.Length < 3) ResetToDefault(); // Check if Limit Points are valid for (int i = 0; i < reachCones.Length; i++) { if (!reachCones[i].isValid) { if (smoothIterations <= 0) { int nextPoint = 0; if (i < reachCones.Length - 1) nextPoint = i + 1; else nextPoint = 0; LogWarning("Reach Cone {point " + i + ", point " + nextPoint + ", Origin} has negative volume. Make sure Axis vector is in the reachable area and the polygon is convex."); } else LogWarning("One of the Reach Cones in the polygon has negative volume. Make sure Axis vector is in the reachable area and the polygon is convex."); } } axis = axis.normalized; } #region Precalculations /* * Apply the default initial setup of 4 Limit Points * */ public void ResetToDefault() { points = new LimitPoint[4]; for (int i = 0; i < points.Length; i++) points[i] = new LimitPoint(); Quaternion swing1Rotation = Quaternion.AngleAxis(45, Vector3.right); Quaternion swing2Rotation = Quaternion.AngleAxis(45, Vector3.up); points[0].point = (swing1Rotation * swing2Rotation) * axis; points[1].point = (Quaternion.Inverse(swing1Rotation) * swing2Rotation) * axis; points[2].point = (Quaternion.Inverse(swing1Rotation) * Quaternion.Inverse(swing2Rotation)) * axis; points[3].point = (swing1Rotation * Quaternion.Inverse(swing2Rotation)) * axis; BuildReachCones(); } /* * Recalculate reach cones if the Limit Points have changed * */ public void BuildReachCones() { smoothIterations = Mathf.Clamp(smoothIterations, 0, 3); // Make another array for the points so that they could be smoothed without changing the initial points P = new Vector3[points.Length]; for (int i = 0; i < points.Length; i++) P[i] = points[i].point.normalized; for (int i = 0; i < smoothIterations; i++) P = SmoothPoints(); // Calculating the reach cones reachCones = new ReachCone[P.Length]; for (int i = 0; i < reachCones.Length - 1; i++) { reachCones[i] = new ReachCone(Vector3.zero, axis.normalized, P[i], P[i + 1]); } reachCones[P.Length - 1] = new ReachCone(Vector3.zero, axis.normalized, P[P.Length - 1], P[0]); for (int i = 0; i < reachCones.Length; i++) reachCones[i].Calculate(); } /* * Automatically adds virtual limit points to smooth the polygon * */ private Vector3[] SmoothPoints() { // Create the new point array with double length Vector3[] Q = new Vector3[P.Length * 2]; float scalar = GetScalar(P.Length); // Get the constant used for interpolation // Project all the existing points on a plane that is tangent to the unit sphere at the Axis point for (int i = 0; i < Q.Length; i+= 2) Q[i] = PointToTangentPlane(P[i / 2], 1); // Interpolate the new points for (int i = 1; i < Q.Length; i+= 2) { Vector3 minus2 = Vector3.zero; Vector3 plus1 = Vector3.zero; Vector3 plus2 = Vector3.zero; if (i > 1 && i < Q.Length - 2) { minus2 = Q[i - 2]; plus2 = Q[i + 1]; } else if (i == 1) { minus2 = Q[Q.Length - 2]; plus2 = Q[i + 1]; } else if (i == Q.Length - 1) { minus2 = Q[i - 2]; plus2 = Q[0]; } if (i < Q.Length - 1) plus1 = Q[i + 1]; else plus1 = Q[0]; int t = Q.Length / points.Length; // Interpolation Q[i] = (0.5f * (Q[i - 1] + plus1)) + (scalar * points[i / t].tangentWeight * (plus1 - minus2)) + (scalar * points[i / t].tangentWeight * (Q[i - 1] - plus2)); } // Project the points from tangent plane to the sphere for (int i = 0; i < Q.Length; i++) Q[i] = TangentPointToSphere(Q[i], 1); return Q; } /* * Returns scalar values used for interpolating smooth positions between limit points * */ private float GetScalar(int k) { // Values k (number of points) == 3, 4 and 6 are calculated by analytical geometry, values 5 and 7 were estimated by interpolation if (k <= 3) return .1667f; if (k == 4) return .1036f; if (k == 5) return .0850f; if (k == 6) return .0773f; if (k == 7) return .0700f; return .0625f; // Cubic spline fit } /* * Project a point on the sphere to a plane that is tangent to the unit sphere at the Axis point * */ private Vector3 PointToTangentPlane(Vector3 p, float r) { float d = Vector3.Dot(axis, p); float u = (2 * r * r) / ((r * r) + d); return (u * p) + ((1 - u) * -axis); } /* * Project a point on the tangent plane to the sphere * */ private Vector3 TangentPointToSphere(Vector3 q, float r) { float d = Vector3.Dot(q - axis, q - axis); float u = (4 * r * r) / ((4 * r * r) + d); return (u * q) + ((1 - u) * -axis); } #endregion Precalculations #region Runtime calculations /* * Applies Swing limit to the rotation * */ private Quaternion LimitSwing(Quaternion rotation) { if (rotation == Quaternion.identity) return rotation; // Assuming initial rotation is in the reachable area Vector3 L = rotation * axis; // Test this vector against the reach cones int r = GetReachCone(L); // Get the reach cone to test against (can be only 1) // Just in case we are running our application with invalid reach cones if (r == -1) { if (!Warning.logged) LogWarning("RotationLimitPolygonal reach cones are invalid."); return rotation; } // Dot product of cone normal and rotated axis float v = Vector3.Dot(reachCones[r].B, L); if (v > 0) return rotation; // Rotation is reachable // Find normal for a plane defined by origin, axis, and rotated axis Vector3 rotationNormal = Vector3.Cross(axis, L); // Find the line where this plane intersects with the reach cone plane L = Vector3.Cross(-reachCones[r].B, rotationNormal); // Rotation from current(illegal) swing rotation to the limited(legal) swing rotation Quaternion toLimits = Quaternion.FromToRotation(rotation * axis, L); // Subtract the illegal rotation return toLimits * rotation; } /* * Finding the reach cone to test against * */ private int GetReachCone(Vector3 L) { float p = 0; float p1 = Vector3.Dot(reachCones[0].S, L); for (int i = 0; i < reachCones.Length; i++) { p = p1; if (i < reachCones.Length - 1) p1 = Vector3.Dot(reachCones[i + 1].S, L); else p1 = Vector3.Dot(reachCones[0].S, L); if (p >= 0 && p1 < 0) return i; } return -1; } #endregion Runtime calculations } }